Radical Chemistry in a Femtosecond Laser Plasma: Photochemical Reduction of Ag⁺ in Liquid Ammonia Solution.

نویسندگان

  • Victoria Kathryn Meader
  • Mallory G John
  • Laysa M Frias Batista
  • Syeda Ahsan
  • Katharine Moore Tibbetts
چکیده

Plasmas with dense concentrations of reactive species such as hydrated electrons and hydroxyl radicals are generated from focusing intense femtosecond laser pulses into aqueous media. These radical species can reduce metal ions such as Au3+ to form metal nanoparticles (NPs). However, the formation of H₂O₂ by the recombination of hydroxyl radicals inhibits the reduction of Ag⁺ through back-oxidation. This work has explored the control of hydroxyl radical chemistry in a femtosecond laser-generated plasma through the addition of liquid ammonia. The irradiation of liquid ammonia solutions resulted in a reaction between NH₃ and OH·, forming peroxynitrite and ONOO-, and significantly reducing the amount of H₂O₂ generated. Varying the liquid ammonia concentration controlled the Ag⁺ reduction rate, forming 12.7 ± 4.9 nm silver nanoparticles at the optimal ammonia concentration. The photochemical mechanisms underlying peroxynitrite formation and Ag⁺ reduction are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photovoltaic Performance of Dye-Sensitized Solar Cell (DSSC) Fabricated by Silver Nanoclusters-Decorated TiO2 Electrode via Photochemical Reduction Technique

In this investigation, Ag@TiO2 nanocomposite was prepared by deposition of silver nanoclusters onto commercial TiO2 nanoparticles (known as P25 TiO2) via photodeposition technique as clean and simple photochemical route. The synthesized Ag@TiO2 nanocomposite was utilized in the fabrication of dye-sensitized solar cell (DSSC) chiefly because, compared ...

متن کامل

The study of propagation of a femtosecond laser pulse in the breast tissue

In this paper, the evaluation of time profile of a femtosecond pulse laser propagated through biological tissues is studied. The majority of the biological tissues with a high scattering anisotropy must be considered as turbid media, that their optical responses are complicated. To study the propagation of ultra-short pulse in turbid media, the diffuse equation is used. In this study, the analy...

متن کامل

Experimental Investigation of Reactive Absorption of Ammonia and Carbon Dioxide by Carbonated Ammonia Solution

In this work, reactive absorption of gases in aqueous electrolyte solutions has been investigated resulting in the development of a procedure in order to calculate the concentrations of ionic and molecular species in the liquid phase. Two duplicate experiments were conducted to investigate simultaneous reactive absorption of ammonia and carbon dioxide in partially carbonated ammonia solutio...

متن کامل

Photochemical degradation of azure-b with sulphate radical ion generated by peroxydisulphate ion with cupric ion

In this paper, the photochemical degradation of azure-b by Cu2+/S2O82− process has beenpresented. Cu2+ as photocatalyst and S2O82− ion as photooxidant used in this process. Atextremely low concentrations, cupric ion showed true catalytic activity in the overall process.The influence of various parameters on the performance of the treatment process has beenconsidered, such as pH, concentration o...

متن کامل

A New Dispersive Liquid-Liquid Microextraction Method Followed by Direct GF-AAS Determination Optimized with Experimental Design and Response Surface Methodology for Determination of Ag(I) in Water Samples

In this research, a rapid, reliable and selective dispersive liquid-liquid microextraction (DLLME) followed by direct injection of microdroplet to graphite furnace atomic absorption spectrometry (GF-AAS) method for the determination of ultra-trace amounts of Ag(I) was developed. Effect of the important experimental parameters on the extraction efficiency of Ag(I) was investigated using response...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 23 3  شماره 

صفحات  -

تاریخ انتشار 2018